A Note on the Lucas Circles

Wilfred Reyes

Universidad del Bío- Bío, Chillán

Clasificación :AMS, s1 M 04

correo:wreyes@pehuen.chillan.ubiobio.cl

- Given a triangle $A B C$ there is a similar triangle $A B^{\prime} C^{\prime}$ such that $B^{\prime} C^{\prime}$ is the side of an inscribed square. The circumscribed circle to $A B^{\prime} C^{\prime}$ is a Lucas Circle. The Three Lucas Circles of a triangle are mutually tangent. This fact was proved in [1]. Here we give an alternative proof and we add some remarks concerning this very interesting system of circles.
Let $A B C$ be a triangle inscribed in the unit circle Ω in the Euclidean Plane. Following the usual notation throughout we set $\|A\|=$ $1, \ldots,\|A-B\|=A B=c, \ldots,<A B>=\cos 2 C=1-c^{2} / 2, \ldots$.
- For $\alpha: 0 \leq \alpha \leq 1$ let O_{A} denote the circle centred at $(1-\alpha)$. A with radius α. This circle is tangent to Ω at A and it is the image of Ω under the similiraty.

$$
X \rightarrow X^{\prime} \quad: A X^{\prime}=\alpha A X, \quad\left(X^{\prime}=(1-\alpha) A+\alpha X\right)
$$

- Also the similarity

$$
X \rightarrow X^{\prime \prime}: \quad A X^{\prime \prime}=-\alpha A X, \quad\left(X^{\prime \prime}=(1+\alpha) A-\alpha X\right), \quad \alpha \geq 1
$$

- Maps Ω onto the circle W_{A} of radius a that is tangent to Ω at A from the outside. Given $\beta, \gamma, O_{B}, O_{C}, W_{B}, W_{C}$ are defined likewise. Now, O_{A} and O_{B} are tangent if and only if

$$
\|(1-\alpha) A-(1-\beta) B\|=\alpha+\beta
$$

Squaring, introducing the stated expression for $\langle A, B\rangle$ and simplifying we get

$$
c^{2}=4 \alpha \beta /(1-\alpha)(1-\beta),
$$

- And a cyclic permutation gives further

$$
a^{2}=4 \beta \gamma /(1-\beta)(1-\gamma), \quad b^{2}=4 \alpha \gamma /(1-\alpha)(1-\gamma)
$$

- The tangency condition applied to the circles W_{A}, W_{B}, W_{C} gives the same formulae but with + instead of - .

It is easy to verify that conversely

$$
\alpha=b c /(b c+2 a) \quad, \beta=c a /(c a+2 b) \quad, \gamma=a b /(a b+2 c)
$$

or , in the case of the outer circles W_{A}, \ldots

$$
\alpha=b c /(2 a-b c) \quad, \beta=c a /(2 b-c a) \quad, \gamma=a b /(2 c-a b)
$$

thus we have characterized the Lucas Circles of a triangle $A B C$ by stating their radii. We proceed now to a geometric explanation. Let $A D=h$ be the height from A in triangle $A B C$, then from the areaform we have $b c=2 h$, so we may write for the radius of $O_{A}, \alpha=$ $h /(a+h)$, while the radius of W_{A} is $\alpha^{\prime}=h /(a-h)$ (we use α^{\prime} because the parameters are not the same in both cases). Now the respective similaraties imply

$$
\begin{gathered}
h^{\prime}=A D^{\prime}=\alpha h=h^{2} /(a+h) \\
h^{\prime \prime}=A D^{\prime \prime}=\alpha^{\prime} h=h^{2} /(a-h)
\end{gathered}
$$

So we for the inner and the outer inscribed triangles

$$
\begin{gathered}
D^{\prime} D=h-h^{\prime}=h a /(a+h)=a^{\prime}=B^{\prime} C^{\prime} \\
D^{\prime \prime} D=h-h^{\prime \prime}=h a /(a+h)=a^{\prime \prime}=B^{\prime \prime} C^{\prime \prime}
\end{gathered}
$$

So $D^{\prime} D$ is the side of an inscribed square as well as $D^{\prime \prime} D$, but the vertices $B^{\prime \prime}$ and $C^{\prime \prime}$ lie on the prolongations of the sides $B A$ and $C A$. Also we have from the above

$$
1 / a^{\prime}+1 / a^{\prime \prime}=2 / h,
$$

thus the height of the triangle is the harmonic mean of the sides of the outer and the inner inscribed squares.

References

[1] Andreas P. Hatzipolakis , Paul Yiu. The Lucas Circles of a Triangle, Amer. Mat. Monthly ,108 (2001) 444-446.
[2]W. Reyes, The Lucas Circles and the Descartes Formula , Forum Geometricurumn, Vol 3 (2003).

